Orissa Journal of Physics

ISSN 0974-8202

© Orissa Physical Society

Vol. 24, No.2 August 2017 pp. 225-230

Thermal Properties of Carbon Doped Monolayer h-BN Systems: A Tight Binding Model Study

S PANDA¹ and G C ROUT^{2†}

¹ Dept. of Physics, Trident Academy of Technology, Chandaka Industrial Estate, Bhubaneswar-751024, India Email Id: saswatip7@ gmail.com ²Condensed Matter Physics Group, Plot No-664/4825, Bhubaneswar -751031, India.

Email:gcr@iopb.res.in,Mob:09937981694

[†]Corresponding author

Received: 12.6.2017; Revised: 30.6.2017; Accepted: 19.7.2017

Abstract: We report here a tight binding model study of hexagonal boron nitride (h-BN) 50% doped with carbon (C) atoms at the boron or nitrogen sublattice sites. The model Hamiltonian is written considering the effect of first, second and third nearest neighbor hopping interactions. The model Hamiltonian is solved using Zubarev's Green's function technique to find out the electron density of states. The temperature dependent entropy and specific heat for pure h-BN, h-BC and h-CN systems are computed and compared.

Keywords: Hexagonal boron-nitride; electron/hole doping; specific heat

[Full Paper]